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A Diagonal Mass Matrix Triangular Spectral
Element Method based on Cubature Points

Abstract The cornerstone of nodal spectral element methods is the co-location of the interpo-
lation and integration points, yielding a diagonal mass matrix that is efficient for time-integration
methods. On quadrilateral elements Legendre-Gauss-Lobatto points are both good interpolation and
integration points but on triangles analogous points have not yet been found. In this paper we use
a promising set of points for the triangle which were only available for polynomial degree N ≤ 5.
However, we generalize the procedure used to derive these points to obtain degree N ≤ 7 points
which we refer to as cubature points because the points are selected based on their integration accu-
racy. The diagonal mass matrix (DMM) triangular spectral element (TSE) method based on these
points can be used for any set of equations and on any type of domain. The fact that these cubature
points integrate up to order 2N along the element boundaries and yield a diagonal mass matrix may
allow the triangular spectral elements to compete with quadrilateral spectral elements in terms of
both accuracy and efficiency while offering more geometric flexibility in the choice of grids. In this
paper we show how to implement this DMM TSE for a variety of applications including elliptic and
hyperbolic equations on different domains. The DMM TSE method yields comparable accuracy to
the exact integration (non-DMM) TSE method while being far more efficient for time-dependent
problems.

Keywords Dubiner, elliptic, finite element, hyperbolic, Koornwinder, mass lumped, Proriol,
shallow water equations, sphere, spherical geometry, triangulation

1 Introduction

Finite element methods were initially applied to self-adjoint operators (e.g., elliptic equations) but
eventually found widespread use in non-self-adjoint operators such as those arising from hyperbolic
equations. For many applications especially those having smooth solutions (i.e., infinitely differen-
tiable) it is far more efficient to use high-order methods instead of low-order ones. On quadrilateral
elements, the high-order accuracy is obtained by using the nodal polynomial basis generated from a
tensor product of the Legendre-Gauss-Lobatto (LGL) points; these points have both good polyno-
mial interpolation and integration (cubature) properties. This approach was introduced by Patera
[1] and dubbed the spectral element method.
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The importance of the LGL points to the diagonal mass matrix spectral element method (DMM
SE) cannot be understated. In the square, a (N + 1) × (N + 1) tensor product of LGL points has
a near optimal Lebesgue constant for the polynomial space QN = span{ξnηm,m, n ≤ N}. This
small Lebesgue constant means the LGL points generate a well conditioned nodal basis for QN .
By nodal basis, we mean the Lagrange interpolating polynomials associated with the LGL points;
these basis functions are also known as cardinal functions. This nodal basis naturally separates into
vertex, edge and interior modes, and can be used in a standard high p finite element method [2].
In addition, the LGL points which interpolate QN have a quadrature formula (cubature in more
than one dimension) which will exactly integrate all polynomials in Q2N−1. The inner products
which appear in the mass matrix of such a formulation will be polynomials of up to degree 2N .
Thus a high-quality approximation of these inner products (although not exact) can be obtained
by evaluating the integrals using the LGL cubature. Combining this cubature approximation with
a nodal basis yields an accurate method with a diagonal mass matrix.

Unfortunately, points analogous to the LGL points do not appear to exist for the triangle. Thus
spectral element methods in triangles have focused on two different approaches. In the first approach,
a more traditional basis of vertex, edge and interior modes is used to construct C0 test functions, and
cubature formulas for the triangle are used to exactly evaluate the resultant inner products (see [3]);
this approach results in a modal triangular spectral element method. In the second approach, a nodal
basis is constructed using nodal sets in the triangle with a small Lebesgue constant. These points
must be found numerically (see [4], [5]). They can then be coupled with exact cubature formulas,
resulting in a nodal space approximation where two different sets of points are used for interpolation
(Fekete points) and integration (Gauss points) [6], [7]); this approach results in a nodal triangular
spectral element method. Both the modal and nodal high-order triangular finite element approaches
yield exponential (or spectral) convergence and for this reason are known as either spectral elements
or spectral/hp elements. The difficulty that these methods face is that they both require the inversion
of a sparse global mass matrix because the interpolation and integration points are not co-located as
in the quadrilateral case. Thus these two triangle-based approaches cannot quite compete in terms
of efficiency with quadrilateral-based spectral elements.

For this reason some attempts have been made to construct triangular spectral element (TSE)
methods with diagonal mass matrices (DMM) [8], [9], [10]. The reason for developing triangular
high-order methods is due to the triangle (2-simplex) being much more geometrically flexible than
quadrilaterals for constructing grids especially for complex domains. In the past, to make triangular
finite element methods more efficient mass lumping had been used which, as pointed out by Cohen
et al. [8], is related to seeking co-located interpolation and integration points. However, such points
for the triangle are not very easy to derive. Cohen et al. [11] obtained points for degree N = 2 and
N = 3 in the triangle by enriching the polynomial space with additional interior modes that vanish
at the edges and vertices of the elements and increase the cubature accuracy. Following similar ideas
Mulder [12] obtained points of degree N = 4 and N = 5. Because these points are constructed
with integration accuracy in mind we refer to them as cubature points ; we generalize the approach
for deriving these cubature points to rederive the sets N = 1, ..., 5 and derive two new sets N = 6
and N = 7 keeping in mind that higher degree sets can be achieved with this approach. The main
point of this paper, however, is to show how to build numerical models for various partial differential
equations using these cubature points.

The remainder of the paper is organized as follows. Section 2 describes the discretization of the
governing equations. This section includes a description of the construction of the cubature points,
Lagrange cardinal functions, and Vandermonde matrix required for the construction of the spatial
filter; the construction of a quality filter appears to be the key to the successful implementation of
the cubature points. In Sec. 3 we present convergence rates for the DMM TSE method and compare
it with the non-DMM TSE developed in [7]. This then leads to some conclusions about the feasibility
of this approach for possible uses in various applications.
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2 Spatial Discretization

In this section we describe the spatial discretization of the equations by the DMM TSE method
including: the derivation of the cubature points, the choice of basis functions, and the Vandermonde
matrix used for filtering. However, before discussing these issues let us first review a few relevant
points concerning interpolation and cubature.

2.1 Interpolation in the Reference Element

We start by giving some definitions and our notation in the reference element T . Let z = (ξ, η) be
a point in R2 and let T be the right triangle given by

T = {(ξ, η) | − 1 ≤ ξ, η ≤ 1; ξ + η ≤ 0}.

Let PN denote the traditional space of all polynomials of degree ≤ N ,

PN = span{ξnηm,m+ n ≤ N}.

Here, following [8] we will also be working in an augmented space of polynomials denoted by PN,M .
To construct this space, we first let P0

N denote the space spanned by the interior modes,

P0
N = {f ∈ PN | f(z) = 0 ∀z ∈ ∂T}

where ∂T is the boundary of T . The augmented space PN,M is then given by adding interior modes
to the space PN ,

PN,M = PN ∪ P0
(N+M)

for M ≥ 0. Thus PN,M is the space of polynomials up to at most degree N along the boundary and
up to degree N +M in the interior. Note that PN = PN,0 and

PN ⊂ PN,M ⊂ P(N+M).

Also, dimPN = (N + 1)(N + 2)/2 and, for N ≥ 3, dimPN,M = dimPN +M(N − 3) + (M + 1)/2.
Now consider a set of K points in the triangle T , {zi = (ξi, ηi), i = 1, . . . ,K}, with K =

dimPN,M . If the points are non-degenerate, the nodal basis for PN,M can be defined uniquely as
the cardinal functions in PN,M which satisfy

ψi(z) =

{

1, if z = zi

0, if z = zj , j 6= i.
(1)

The nodal basis is directly related to interpolation, since for an arbitrary function q the interpolant
I(q) ∈ PN,M is given by

I(q) =

K
∑

i=1

q(zi)ψi(z)

where I(q)(zi) = q(zi). The quality of the interpolation operator (and thus the nodal basis) for a
given space and set of points is usually measured by the Lebesgue constant ‖I‖ (the L∞-norm of
the interpolation operator).
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2.2 Cubature in the Reference Element

Now we turn to the cubature properties of the points zi. A cubature rule for these points and weights
wi is of strength d if and only if

∫

T

g =

K
∑

i=1

wig(zi) ∀g ∈ Pd. (2)

Any set of K = dimPN,M non-degenerate points {zi} will have a cubature rule of at least strength
N by using the generalized Newton-Cotes weights,

wi =

∫

T

ψi.

Because of Eq. (1), this choice gives a quadrature rule that exactly integrates the cardinal functions
ψi. Since these functions are a basis for PN,M the cubature rule is exact for all g ∈ PN,M and thus
for all g ∈ PN and so the cubature rule is at least of strength N . However, for some point sets,
the Newton-Cotes quadrature formula will integrate a larger space and the cubature rule can be of
strength 2N or higher.

As mentioned in the introduction, for the 1-simplex and its tensor products, the LGL points
of degree N are both optimal interpolation and cubature points. Thus a highly accurate method
can be developed which results in a diagonal mass matrix since the interpolation and integration
points are co-located; having a diagonal mass matrix is important for achieving efficiency. On the
2-simplex such points have not yet been found and thus far one must be content to choose either
good interpolation or integration but not both.

It should be noted that in previous works the Fekete points have been used as integration points
which then results in a diagonal mass matrix [9], [13]; however, the cubature rule for Fekete points
of degree N is only of strength N , and thus using these cubature points is a poor approximation to
the degree 2N inner products which appear in the integral formulation of the equations. For some
problems, cubature of strength N is insufficient to achieve exponential convergence. An example of
what happens when Fekete points are used for both interpolation and integration is shown in Fig.
1 for test 3 given in Sec. 3. The dashed line denotes the solution obtained with Fekete points of
degree N for interpolation and Gauss points for integration of strength 2N (to achieve a strength of
2N , the Gauss points are oversampled, meaning there are too many of them to be used to construct
a degree N nodal basis). These two sets of points working in tandem give extremely good results
where the error remains flat for long time-integrations; we shall refer to this approach as the Fekete-
Gauss method. In contrast, the dotted line shows that when the Fekete points are used for both
interpolation and integration, the fact that these points are only of strength N means that the error
rises rather quickly and is significantly larger. The advantage of the latter strategy, however, is that
the interpolation and integration points are co-located; that is, they are one and the same. This
vastly simplifies the construction of the numerical algorithms because one need not interpolate onto
another set of points in order to evaluate integrals. The fact that the interpolation and integration
points are co-located means that the mass matrix will be diagonal and thereby will be trivial to
invert; a non-diagonal mass matrix has been a thorn in the side of triangular spectral element
methods and is the main reason why triangles have not been able to compete with quadrilaterals in
terms of efficiency.

From this discussion it seems logical to assume that to get around the current dilemma requires
the construction of a new set of points for the triangle that have cubature strength of close to
2N while having reasonably low Lebesgue constants. In the next section we describe the approach
used for constructing points that satisfy both of these two criteria. The solid line in Fig. 1 shows
the results for these new cubature points; these points offer a similar accuracy to the Fekete-Gauss
method while having the attractive property of the Fekete points, that is, a diagonal mass matrix.
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Fig. 1 Test 3: Shallow Water Equations. The normalized φ L2 error as a function of time in days for the
Fekete-Gauss method with O(2N) integration (dashed line), Fekete points with O(N) integration (dotted
line), and the cubature points with O(2N) integration (solid line) integration for nI = 3 and N = 7
polynomials.

2.3 Computing Cubature Points

Finding points with optimal cubature properties has been extensively studied independently of
spectral element applications and has a long history of both theoretical and numerical development.
For a recent review, see [14], [15], [16], and [17]. An on-line database containing many of the best
known quadrature formulas is described in [18]. One successful approach for numerically finding
quadrature formulas dates to [19]. A generalized version was used recently in [20]. Newton’s method
is used to solve the nonlinear system of algebraic equations for the quadrature weights and locations
of the points. Symmetry is used to reduce the complexity of the problem. The complexity can be
further reduced with a cardinal function based algorithm [21].

If one consults the database and the newest numerical results in the above references, it appears
that cubature points of degree N with strength 2N or even 2N − 1 do not exist in T . Furthermore,
the best cubature formulas for T do not have sufficient points (if any) on the boundary of T . If a
set of cubature points will also be used to construct the nodal basis in the space PN,M there must
be N + 1 points along each edge of T . This is because the nodal basis must generate vertex, edge
and interior modes, and the interior modes must be uniformly zero on ∂T (this is critical for the
construction of C0 approximations across element boundaries). If a cardinal function ψi ∈ PN,M is
zero on N + 1 points on an edge of T then ψi(z) = 0 for any point z on that edge. This is because
the restriction of any function in PN,M to that edge is a polynomial of degree N . Thus any ψi for
zi in the interior of T is automatically an interior mode.

Since the goal of achieving a cubature formula using points which interpolate PN and are of
strength 2N − 1 is not achievable, we thus follow the ideas first put forth by Cohen et al. [11], [8]
and Mulder [12]. Instead of working in PN , we use the enriched space PN,M with M > 0. A point
set which can interpolate PN,M necessarily contains more points than those for PN . Thus there
are more degrees of freedom which can be used to satisfy the system of cubature equations given
in Eq. (2). The resulting points, which we call PN,M cubature points, are tabulated and compared
against the two point sets used in the Fekete-Gauss method in Table I. The cubature points for
N = 2 and N = 3 are due to Cohen et al. [11], [8] and degrees N = 4 and N = 5 are due to Mulder
[12].
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To extend these results, we used the cardinal function cubature algorithm of [21]. Straightforward
modifications were required, first to work with interpolation points for PN,M instead of PN , and
second to impose that there be N + 1 points along each edge of T (for a total of 3N points along
the perimeter). We were able to reproduce the previously computed results for degrees N ≤ 5 along
with the two new degrees N = 6 and N = 7 which we list in Table III. In fact, higher degrees of N
for either triangles or tetrahedra are achievable with this procedure.

Fekete-Gauss in PN Cubature in PN,M

N K K′ d ‖ I ‖ N M K = K′ d ‖ I ‖
1 3 3 2 1.00 1 0 3 1 1.00
2 6 6 4 1.67 2 1 7 3 1.45
3 10 12 6 2.11 3 1 12 5 2.21
4 15 16 8 2.58 4 1 18 7 3.75
5 21 25 10 3.19 5 2 30 10 5.23
6 28 36 12 4.08 6 3 46 12 7.40
7 36 46 14 4.78 7 3 51 14 7.50

Table I Properties of the cubature points and the points used in the Fekete-Gauss method. N and M
determine the polynomial space PN,M , K is the number of interpolation points, K ′ the number of integration
points, d the strength of the integration points and ‖ I ‖ is the Lebesgue constant of the interpolation points.

Table I shows the number of interpolation points, K, integration points, K ′, and the Lebesgue
constant, ‖ I ‖, for both the Fekete-Gauss and cubature points as a function of the polynomial
degree, N . The first thing to notice about these two sets of points is that the Fekete-Gauss points
have superior Lebesgue constants than the cubature points. However, this should not be surprising
since the Fekete points are constructed in order to minimize interpolation error and the Lebesgue
constant is a measure of the quality of the points to achieve good interpolation (a lower Lebesgue
constant implies better interpolation).

2.4 Evaluating the Nodal Basis Functions

To define the local operators which shall be used to construct the global approximation of the
solution we begin by decomposing the domain Ω into Ne non-overlapping triangular elements Ωe

such that

Ω =

Ne
⋃

e=1

Ωe.

We then further map the arbitrary triangles Ωe into the reference right triangle T . To perform
differentiation and integration operations, we introduce the nonsingular mapping x = Ψ(ξ) which
defines a transformation from the physical Cartesian coordinate system, x, within each triangle Ωe

to a local reference coordinate system, ξ, in the reference right triangle T (see [7] for details on this
mapping for curved elements in R3).

Let us now represent the local element-wise solution q by its nodal expansion in PN,M as

q(ξ) =

K
∑

k=1

q(ξk)ψk(ξ)

where K = dimPN,M and the nodal basis functions ψk are defined as in Eq. (1). For the points
(ξi, ηj) we choose the newly derived cubature points which, while trivial to evaluate nodal basis
functions, complicate any other operation such as the evaluation of their derivatives. Here we follow
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[5] and represent the nodal basis functions in terms of the Proriol polynomials [22],[23] which in T
are an orthogonal basis for PN,0. Stable recurrence relations which can be used to evaluate these
polynomials and their derivatives are given in [24]. Note that these polynomials are traditionally
denoted with a double index (m,n) representing the top degree in ξ and η. But here we use a
single index and denote them by ϕi, i = 1, . . . , dimPN . To generate an easily computable basis
for PN,M we need to add additional basis functions for the interior modes in PN,M which are
not in PN . For these polynomials we use the formulas given in [24],[2], and we denote them by
ϕi, i = (dimPN + 1), . . . ,K.

2.5 Filtering the High-Frequency Waves

As with most high-order methods, when solving non-linear problems some filtering is needed to
control the accumulation of aliasing errors. The ability to selectively filter only the highest wave
numbers is an advantage of the spectral element method. However it does require that we use an
expansion in only orthogonal Proriol polynomials, since a nodal expansion or an expansion that
involves interior modes will not be orthogonal and thus not isolate the high frequency content to
only the high wave number modes.

Thus to implement filters, we need to compute the expansion of the local element-wise solution q

in terms of only orthogonal Proriol polynomials. In order to prevent confusion with the augmented
basis for PN,M , here we denote the basis for P(N+M) by gi, i = 1, . . . ,K1, where K1 = dimP(N+M).

Since q ∈ PN,M ⊂ P(N+M), q has a unique expansion in terms of g. Denoting this expansion by

q(ξi, ηi) =

K
∑

k=1

q̃kRi,k (3)

where q̃k are the Proriol coefficients of q and R is the rectangular Vandermonde matrix for the basis
g, allows us to define the K ×K1 rectangular Vandermonde matrix R by

Ri,k = gk(ξi, ηi).

Note that the appropriate right inverse of R for filtering is constructed as follows: given the set
of point values q(ξi, ηi), the expansion in terms of ϕ (the basis for PN,M) can be computed by
applying V −1, the inverse of the Vandermonde matrix. This polynomial is in P(N+M) and thus has
a unique expansion in terms of g (the basis for P(N+M)), and so we have a mapping from the set
of point values q(ξi, ηi) to the expansion coefficients q̃; let us denote this map by Rr. Applying Eq.
(3) to expansion coefficients computed with Rr must recover the original grid point values, and thus
RRr = I where I is the identity matrix. In matrix form, we now write Eq. (3) as

q = R q̃ q̃ = Rr q. (4)

We can now apply filters to q directly to its Proriol coefficients in P(N+M). There are many
possible filters, but here, based on past experience [25], [7], we choose the Boyd-Vandeven transfer
function [26] which we denote by Λ. Applying the filter to the amplitudes and then transforming to
nodal (physical) space is achieved in the following matrix-vector multiply operation

qF = F q

where

F = R Λ Rr (5)
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is the K ×K filter matrix and is applied every time-step at full strength. However, in the original
Boyd-Vandeven filter only the highest modes (polynomials of degree N +M) are completely anni-
hilated and this may be too severe for either quadrilateral spectral elements or exact integration
triangular spectral elements. Thus the issue with the new cubature points is how to view the approx-
imation space which these points span. For example, should one take the degree to be the degree of
the edge modes N , or the degree of the interior modes, N +M? Let us denote the order of the space
which the filter acts on as NF . In Table II we show the values used for filtering the cubature points.
As an example, for P7,3 the interpolation functions of the cubature points contain some degree 10
(N+M) modes. The filter then acts on all the degree 9 and 10 modes. Unfortunately, we currently
have no theory to support our filter choices; the values listed in Table II were found experimentally
but they appear to work for a variety of applications.

Filtering for PN,M

N M K NF

1 0 3 2
2 1 7 3
3 1 12 4
4 1 18 5
5 2 30 6
6 3 46 8
7 3 51 8

Table II The indices N, M for the polynomial space, the number of cubature points K, and the highest
mode unaffected by the filter, NF .

2.6 Integration and Local Element-wise Operators

In order to complete the discussion of the local element-wise operations required to construct discrete
spectral element operators we must lastly describe the integration procedure required by the weak
formulation of all Galerkin methods. For any two functions f and g the integration I proceeds as
follows

I[f, g] =

∫

Ωe

f(x) g(x)dx =

K
∑

i=1

wi | J(ξi) | f(ξi) g(ξi) (6)

where w are the cubature weights and J the Jacobians of the transformation from physical space
to the local space of the reference element. Note that for straight-edged triangles J and all other
metric terms are constant but not so for curved elements.

To simplify the description of the numerical algorithm, let us define the following local element
operators: let

Me
ij =

∫

Ωe

ψi(x)ψj(x)dx, (7)

Le
ij =

∫

Ωe

∇ψi(x) · ∇ψj(x)dx, (8)

De
ij =

∫

Ωe

ψi(x)∇ψj(x)dx, (9)

represent the mass, Laplacian, and differentiation matrices where i, j = 1, . . . ,K.
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Using Eq. (6) allows us to rewrite Eqs. (7), (8), and (9) as

Me
ij = wi | J(ξi) | δij , (10)

Le
ij =

K
∑

i=1

wi | J(ξi) | ∇ψi(ξi) · ∇ψj(ξi), (11)

De
ij = wi | J(ξi) | ∇ψj(ξi), (12)

where δij is the Kronecker delta function. As Eq. (10) shows, having the interpolation and integration
points, ξi, co-located results in the mass matrix, M e, being diagonal which significantly simplifies
the construction of the global matrix problem and its solution.

2.7 Formulation of the Method

We follow the generalized diagonal mass matrix spectral element formulation outlined in [9]. This
method is based directly on the original DMM spectral element method proposed by [27] except
that the domain is decomposed into triangular instead of quadrilateral elements and we are working
in the space PN,M . The method proceeds as follows: by piecing together appropriate nodal basis
functions in neighboring elements, a set of global functions can be constructed that are C0 and
piecewise polynomial. These global functions are used as the test functions in the weak form of
the equations of interest, and the unknowns are expanded in terms of these global functions. The
resultant integral equations are decomposed as a sum of integrals over each element. Finally, the
quadrature rule associated with the points used to construct the cardinal function basis is used to
evaluate each integral. Because of the nodal nature of the global functions, this results in much
simplification, including giving a diagonal mass matrix.

The result is a method which can satisfy the equations globally by simply summing the local
element matrices, Eqs. (10), (11), and (12), to form their global representation [27]. This summation
procedure is known as the global assembly or direct stiffness summation. Let us represent this direct
stiffness summation (DSS) procedure by the summation operator

Ne
∧

e=1

with the mapping (i, e) −→ (I) where i = 1, . . . ,K are the local element grid points, e = 1, . . . , Ne

are the spectral elements covering the global domain, and I = 1, . . . , Np are the global grid points.
Applying the DSS operator to the local element matrices results in the following global matrices:

M =

Ne
∧

e=1

Me, L =

Ne
∧

e=1

Le, D =

Ne
∧

e=1

De

where M , L, and D are matrices of dimension Np × Np and M is diagonal and thereby trivial to
invert.

2.7.1 Poisson Equation on the Plane

For the Poisson equation
∇2q = f (13)

we define its variational statement as: find q ∈ H1
0 (Ω) ∀ ψ ∈ H1 such that

−Lq = f (14)

9



where H1
0 (Ω) is the space of all functions (with zero Dirichlet boundary conditions) with functions

and first derivatives belonging to L2(Ω) - the space of all functions that are square integrable over
Ω. The domain used for this test is x ∈ [0, 1]× [0, 1].

2.7.2 Advection Equation on the Sphere

Similarly, for the advection equation on the sphere

∂q

∂t
+ u · ∇q = 0 (15)

we define the variational statement as: find q ∈ H1(Ω) ∀ ψ ∈ H1 such that

∂q

∂t
= −M−1uT Dq. (16)

On the sphere, however, no additional boundary conditions are required other than periodicity which
is satisfied by the connectivity of the grid.

2.7.3 Shallow Water Equations on the Sphere

The shallow water equations on the sphere are

∂q

∂t
= S(q) (17)

S(q) = −

(

∇ · (φu)
u · ∇u + f (x × u) + ∇φ+ µx

)

(18)

where q = (φ,uT )T , the nabla operator is defined as ∇ = (∂x, ∂y, ∂z)
T , φ is the geopotential height

(φ = gh where g is the gravitational constant and h is the vertical height of the fluid), u = (u, v, w)T

is the Cartesian wind velocity vector, f = 2ωz
a is the Coriolis parameter and (ω, a) represent the

rotation of the earth and its radius, respectively.

The term µx, where x = (x, y, z)T is the position vector of the grid points, is a fictitious force
introduced to constrain the fluid particles to remain on the surface of the sphere (see [7] for details).
Note that this equation set represents an initial value problem with no boundary conditions; the only
condition required is that of periodicity which is imposed by the geometry of the spherical domain.

The variational statement of the problem is: find (φ,uT )T ∈ H1(Ω) ∀ ψ ∈ H1 such that

∂φ

∂t
= −M−1DT (φu) (19)

∂u

∂t
= −M−1uT Du − f (x × u) −M−1Dφ− µx (20)

where for φ and u we choose the polynomial space PN,M -PN,M .
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3 Numerical Experiments

For the numerical experiments, we use the normalized L2 error norm

‖q‖L2 =

√

∫

Ω(qexact − q)2dΩ
∫

Ω
q2exact dΩ

to judge the accuracy of the TSE methods. In addition, we compute the order of convergence as an
average convergence rate computed over all the grid refinements where at each grid refinement, nI ,
the convergence rate is defined as

rate =
log [errornI+1/errornI

]

log [nI/(nI + 1)]
.

The grid refinement parameter nI determines the number of elements as follows: on the plane the
number of elements are NE = 2n2

I and on the sphere NE = 20n2
I .

Three equation sets are used to judge the performance of the DMM TSE method: elliptic (linear
scalar) and hyperbolic equations (linear scalar and nonlinear vector). The elliptic (test 1) is solved
on the plane while the hyperbolic equations (tests 2 and 3) are solved on the sphere. The reason why
the topology of the domain is important is because a domain without curvature (such as the plane)
can be tiled completely with straight-edged triangles while a domain with curvature must be tiled
by curved triangles; the metric terms of straight-edged triangles are constant per element whereas
for curved elements the metric terms vary with the position of the interpolation/integration points
within the element. Thus the application of DMM TSE method on a curved manifold represents a
very stringent test for judging the performance of this new method.

In the next few sections we compare the results of the DMM TSE method using cubature points
with those of the Fekete-Gauss method. The Fekete-Gauss method has been optimized to both
interpolate and integrate with high accuracy. Therefore, these points represent the best possible
solutions that one can achieve with nodal triangular spectral elements. While it is true that for
curved elements the metric terms are no longer constant and therefore for exact integration one
would require perhaps up to O(3N) integration accuracy; however, because the difference between
O(3N) and O(2N) integration is quite minimal we shall refer to the Fekete-Gauss O(2N) as the
best possible solution that one can achieve with nodal triangular spectral elements.

Of special interest is whether or not the cubature points yield exponential (spectral) convergence;
in other words, we are particularly interested if the following relation holds

error ∝ O(∆xN+1)

which states that the error decreases exponentially with grid refinement (∆x) for increasing polyno-
mial order N . Thus for a method to possess spectral accuracy requires a convergence rate of order
(N+1) for all values of N.

3.1 Test 1: Poisson Equation on the Plane

The Poisson equation has the exact solution

qexact = xa(1 − x)byc(1 − y)d

when the forcing function, f , is used to satisfy Eq. (13). The coefficients a, b, c, and d control the
polynomial degree of the solution and for simplicity we take a = b = c = d = 3 which results in
a 12th order polynomial which is more than sufficient to judge the accuracy of up to 7th order
cubature points. Homogeneous Dirichlet boundary conditions are used and the Laplacian operator
is inverted using the conjugate gradient method with point Jacobi iteration.

11
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Fig. 2 Test 1: Poisson Equation. The normalized q L2 error for the a) Fekete-Gauss and b) cubature
points TSE methods as a function of grid refinement, nI , for the polynomial degrees N = 1, ..., 7 with their
associated convergence rates.

3.2 Test 2: Advection Equation on the Sphere

The initial condition used for the advection equation is

q(λ, θ, 0) = e−r2/r2

i

where

r = a cos−1 (sin θi sinλ+ cosλi cos θ cos(λ− λi)) , ri =
a

3
,

a is the radius of the sphere, and (λi, θi) is the initial position of the wave in spherical coordinates;
the exact solution can be found in [28]. The time-integration is handled by the explicit 2nd order
backward difference formula proposed in [29].

While this test case also involves a linear scalar equation, as in test 1, the difference is that this
equation is now hyperbolic with the additional degree of difficulty posed by the curved topology of
the spherical domain; this curvature in the domain has major consequences because this means that
the metric terms (e.g., Jacobians) are no longer constant.

3.3 Test 3: Shallow Water Equations on the Sphere

To further test the accuracy of the DMM TSE method we use a system of nonlinear hyperbolic
equations, that is, the shallow water equations on a rotating sphere. Similarly to test 2, this test
also poses the additional difficulty of having to use curved elements in order to allow the elements
to tile the surface of the sphere.

The initial conditions used are those of case 2 in the Williamson et al. [28] shallow water test
suite. Once again, the time-integration is handled by the explicit 2nd order backward difference
formula.
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Fig. 3 Test 2: Advection Equation. The normalized φ L2 error for the a) Fekete-Gauss and b) cubature
points TSE methods as a function of grid refinement, nI , for the polynomial degrees N = 1, ..., 7 with their
associated convergence rates.

3.4 Summary of Results

Figures 2, 3, and 4 show the normalized L2 error as a function of grid resolution, nI , for various
polynomial degrees for the Fekete-Gauss and cubature points for tests 1, 2, and 3, respectively.

For test 1 (elliptic equation on the plane) the cubature points perform better than the Fekete-
Gauss method for some degrees of N but do not do as well for others, especially for N ≥ 6. In
fact, for this particular type of equation it makes little sense to use the cubature points over the
Fekete-Gauss points because both methods require the inversion of a Laplacian and for this reason
the cubature points have no advantage; note that the discrete weak-form Laplacian operator is in
fact the well-known stiffness matrix.

For test 2 (advection equation on the sphere) both methods failed to yield spectral convergence
even though both methods converged at a rapid rate. However, both methods yield similar conver-
gence rates which is a good result because it means that the cubature points behave similarly to the
Fekete-Gauss points; recall that the Fekete-Gauss points represent the best that one can do with
high-order nodal triangles.

For test 3 (shallow water equations on the sphere) the results of the cubature points are quite
similar to those of the Fekete-Gauss method (they both yield spectral convergence); this seems to
indicate that the cubature points are a good replacement for the Fekete-Gauss points for systems of
nonlinear hyperbolic equations.

From these results one can see that overall the cubature points do quite well compared to the
Fekete-Gauss points. The main reason for considering the cubature points is due to the fact that
they yield a diagonal mass matrix which allows for the construction of efficient time-integration
algorithms. To emphasize this point we show in Fig. 5 the L2 error (Fig. 5a) and wallclock time
in seconds (Fig. 5b) as a function of polynomial order for test 3 for both the Fekete-Gauss and
cubature point methods using grid refinement level nI = 3; these results were obtained on a Dell
PC with an Intel Xeon 1.8 gigahertz processor. Figure 5a shows that both methods yield spectral
convergence and that these errors are almost identical for both methods; however, Fig. 5b shows
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Fig. 4 Test 3: Shallow Water Equations. The normalized φ L2 error for the a) Fekete-Gauss and b) cubature
points TSE methods as a function of grid refinement, nI , for the polynomial degrees N = 1, ..., 7 with their
associated convergence rates.

that the Fekete-Gauss points require far more computing time to achieve these results. The cost
of the Fekete-Gauss method increases exponentially with either increasing grid resolution, nI , or
polynomial degree, N . This is due to the Fekete-Gauss method having a sparse global mass matrix
which must be inverted at every time step. Giraldo and Warburton [7] showed how to construct this
type of nodal triangular spectral element and even with the use of static condensation and conjugate
gradient iterative solvers the cost of the method could not be brought down. In contrast, the cubature
points TSE method, having a diagonal mass matrix, allows for very simple and extremely efficient
time-integration strategies precisely because it does not involve the inversion of a mass matrix. In
this paper we have only discussed the repercussions that a diagonal mass matrix has on the efficiency
of explicit time-integrators; however, these effects are most important in the construction of semi-
implicit time-integrators which are used to increase the allowable time-step that a model can use
while maintaining stability. Semi-implicit time-integrators play an important role in production-type
models such as those used in numerical weather prediction (see [30]).

Finally, in Fig. 6 we show the accuracy per computational cost for both the Fekete-Gauss (Fig.
6a) and cubature points (Fig. 6b) for test 3 for orders N = 1, ..., 7. For such a plot, the best results
are those nearest the bottom left corner of the plots; that is, this means that the method yields high
accuracy (low L2 error) with little computational cost. For the Fekete-Gauss points the polynomial
orders N = 4 and N = 6 offer the best compromise between accuracy and efficiency. Although the
results for these points are not very easy to interpret one thing is clear: orders N ≤ 3 are inferior to
orders N ≥ 4. On the other hand, the results of the cubature points are much simpler to interpret.
Note that orders N ≤ 2 are not very competitive with the high order points (N ≥ 3). The orders
N = 3 and N = 4 give good results, but clearly orders N ≥ 5 are by far the best. From these three
orders, as in the Fekete-Gauss points, order N = 6 offers the best compromise between accuracy
and efficiency. In summary, the main point of this figure is that high order (in this case N = 6) is
clearly far more efficient than the lower order methods. For example, to get an accuracy of 1× 10−6

the order N = 6 points will cost far less than the other polynomial orders.
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Fig. 5 The a) normalized φ L2 error and b) wallclock time as a function of polynomial order, N , for
the Fekete-Gauss and cubature points TSE methods for a five day integration of test 3 using nI = 3 grid
refinement.
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Fig. 6 The normalized φ L2 error as a function of wallclock time for a) the Fekete-Gauss and b) cubature
points for a five day integration of test 3 using N = 1, ..., 7.

4 Conclusions

We have presented a promising new set of cubature points on the triangle which can be used both
for interpolation and integration. The fact that the interpolation and integration are co-located
means that the points yield a diagonal mass matrix (DMM). We presented implementation strategies
of this DMM triangular spectral element (TSE) method for elliptic and hyperbolic equations on
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planar and spherical surfaces. We compared the cubature points to the usual strategy of employing
one set of points for interpolation (Fekete) and another set for integration (Gauss) which we call
Fekete-Gauss TSE; this method, however, does not yield a diagonal mass matrix. The cubature
points compared quite favorably with the Fekete-Gauss points especially for the system of nonlinear
hyperbolic equations. In addition, these good solutions can be obtained quite cheaply with the
cubature method because they yield a diagonal mass matrix which allows for simple and efficient
time-integration strategies; this may now allow the triangular SE method to compete in terms of
both accuracy and efficiency with the quadrilateral SE method while allowing far more flexibility
in the choice of adaptive unstructured grids. Because the cubature points yield a DMM TSE, in
future work we shall exploit this property to construct semi-implicit time-integrators for various
hyperbolic equation sets on adaptive unstructured grids including: the Euler equations, and the
primitive equations for both the atmosphere and ocean.

Acknowledgements FXG was supported by the Office of Naval Research through program element PE-
0602435N. MAT was supported through the Sandia University Research Program. We would like to thank
Tim Warburton for his assistance during the initial phase of this work.

References

1. A.T. Patera, A spectral element method for fluid dynamics - laminar flow in a channel expansion. Journal
of Computational Physics 54 (1984) 468-488.

2. P. Solin, K. Segeth, and I. Dolezel, Higher-Order Finite Element Methods. Chapman and Hall/CRC Press
(2003).

3. S.J. Sherwin and G.E. Karniadakis, A triangular spectral element method; applications to the incom-
pressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 123 (1995)
189-229.

4. J.S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex.
SIAM Journal on Numerical Analysis 35 (1998) 655-676.

5. M.A. Taylor, B.A. Wingate, and R.E. Vincent, An algorithm for computing Fekete points in the triangle.
SIAM Journal on Numerical Analysis 38 (2000) 1707-1720.

6. T. Warburton, L.F. Pavarino, and J.S. Hesthaven, A pseudo-spectral scheme for the incompressible
Navier-Stokes equations using unstructured nodal elements. Journal of Computational Physics 164 (2000)
1-21.

7. F.X. Giraldo, and T. Warburton, A nodal triangle-based spectral element method for the shallow water
equations on the sphere. Journal of Computational Physics 207 (2005) 129-150.

8. G. Cohen, P. Joly, J.E. Roberts, and N. Tordjman, Higher order triangular finite elements with mass
lumping for the wave equation. SIAM Journal of Numerical Analysis 38 (2001) 2047-2078.

9. M.A. Taylor, B.A. Wingate, A generalized diagonal mass matrix spectral element method for non-
quadrilateral elements. Applied Numerical Mathematics 33 (2000) 259-265.

10. B. Helenbrook, Polynomial Bases Suitable for Mass Lumping on Triangles. International Conference on
Spectral and High-Order Methods (ICOSAHOM) (2004).

11. G. Cohen, P. Joly, and N. Tordjman, Higher order triangular finite elements with mass lumping for the
wave equation, in Proc. 3rd Int. Conf. on Mathematical and Numerical Aspects of Wave Propagation. Eds.
G. Cohen, E. Becache, P. Joly, and J.E. Roberts (SIAM, Philadelphia, 1995).

12. W.A. Mulder, Higher-order mass-lumped finite elements for the wave equation. Journal of Computational
Acoustics 9 (2000) 671-680.

13. D. Komatitsch, R. Martin, J. Tromp, M.A. Taylor, B.A. Wingate, Wave propagation in 2-D elastic media
using a spectral element method with triangles and quadrangles. J. Comp. Acoustics 9 (2001) 703-718.

14. R. Cools and P. Rabinowitz, Monomial cubature rules since Stroud: a compilation. J. Comp. and Appl.
Math. 48 (1993) 309-326.

15. J. Lyness and R. Cools, A survey of numerical cubature over triangles. Applied Mathematics 48 (1994)
127-150.

16. R. Cools, Constructing cubature formulae: the science behind the art. Acta Numerica 6 (1997) 1-54.
17. R. Cools, Monomial cubature rules since Stroud: a compilation - part 2. J. Comp. and Appl. Math. 112

(1999) 21-27.
18. R. Cools, An encyclopaedia of cubature formulas. Journal of Complexity 19 (2003) 445-453. Online

database located at http://www.cs.kuleuven.ac.be/̃ nines/research/ecf/ecf.html.

16



19. J. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules for the triangle. J. Inst. Math.
Appl. 15 (1975) 19-32.

20. S. Wandzura and H. Xiao, Symmetric quadrature rules on a triangle. Computers and Mathematics with
Applications, 45 (2003) 1829-1840.

21. M.A. Taylor, B.A. Wingate, and L.P. Bos, A cardinal function algorithm for computing multivariate
quadrature points. SIAM Journal on Numerical Analysis to appear (2006).
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N Number x y weight
6 1 0.3333333333333333 0.3333333333333333 0.0340548001889250

3 0.0000000000000000 0.0000000000000000 0.0004842730760035
3 0.4207074595153500 0.1585850809708500 0.0177785008242257
3 0.6975345054486999 0.1512327472752000 0.0122972050038037
3 0.5000000000000000 0.0000000000000000 0.0032466690489985
3 0.0484777152220000 0.9030445695557999 0.0080400015624530
6 0.1009333864342500 0.0000000000000000 0.0020317308565252
6 0.2688476619807000 0.0000000000000000 0.0030227165121272
6 0.3694234213017000 0.0497413284926000 0.0171924926133297
6 0.2841797219605000 0.1685399500274000 0.0202547332903523
6 0.1811513191269000 0.0548913882427000 0.0142325352719635

7 3 0.0000000000000000 0.0000000000000000 0.0002270804834076
3 0.1671653533624000 0.6656692932752000 0.0215081779064107
3 0.4799846082104500 0.0400307835790500 0.0142371781018152
3 0.2805588962964500 0.4388822074071001 0.0236326025323162
3 0.9336675298564999 0.0331662350717500 0.0041445630524500
6 0.0797278918581500 0.0000000000000000 0.0011906918877981
6 0.2013629039284500 0.0000000000000000 0.0020909447779454
6 0.3789551577387000 0.0000000000000000 0.0026709648805728
6 0.3428699782753000 0.1406581918813000 0.0211675487584138
6 0.2809834462433500 0.0493368139566500 0.0139626184559205
6 0.1321756636294500 0.0499184036996000 0.0103757635344830

Table III The polynomial order, N , the number of cubature points, and the x and y value of the first
two barycentric coordinates of the cubature points which correspond to this cubature weight. The third
barycentric coordinate is defined such that the sum of all three coordinates is one.
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